Celebrated for remarkable versatility, the Ninja® 1000SX motorcycle combines everyday comfort and two-up touring capability with pure sporting thrills and next-level electronics. Featuring a 1,043cc engine, fined-tuned suspension and advanced rider support electronics, the Ninja 1000SX is plenty ready for more aggressive sport rides and longer sport touring adventures.
Take it for a ride todaySudden over-application of the brakes, or braking on low-grip surfaces (surfaces with a low coefficient of friction) such as wet asphalt or manhole covers, may cause a motorcycle's wheel(s) to lock up and slip.
Developed and tested through Kawasaki Factory racing, the Assist & Slipper Clutch utilizes two types of cams. An assist cam and a slipper cam enable the Assist & Slipper Clutch to function in two different ways, with the clutch hub working together or apart from the operating plate. Under normal operat
Using high-precision electronics for engine management, Kawasaki models can achieve a high level of fuel efficiency. However, fuel consumption is greatly affected by throttle use, gear selection, and other elemen
Electronic Cruise Control allows the rider to maintain a desired speed (engine rpm) with the simple press of a button. Because the rider does not have to constantly maintain the throttle position, this system allows relaxed cruising.
Electronic Throttle Valves allow the ECU to deliver the ideal amount of fuel and air to the engine.
Horizontal Back-link Rear Suspension arranges its shock unit horizontally, greatly contributing to efficient use of space and mass centralization.
Combined with Kawasaki’s proprietary dynamic modelling program, input from the IMU (Inertial Measurement Unit) enables even more precise chassis orientation awareness, the key to bringing Kawasaki’s electronics to the next level.
KCMF (Kawasaki Cornering Management Function) oversees multiple engine and chassis electronic management systems to facilitate smooth cornering.
KIBS (Kawasaki Intelligent anti-lock Brake System) is a high-precision brake system designed specifically for supersport models, offering highly efficient braking while maintaining natural feel.
KTRC (Kawasaki Traction Control), Kawasaki's advanced traction control system, offers a selection of modes to suit a wide range of riding situations, from sport riding to touring.
Power modes offer riders an easily selectable choice between Full and Low Power. While Full Power is unrestricted, in Low Power mode maximum power is limited to approximately 75-80% of Full. Response is also milder in L
Smartphone connectivity contributes to an enhanced motorcycling experience by enabling riders to connect to their motorcycle wirelessly.
4-stroke, In-Line Four, DOHC, 16-valve, liquid-cooled
1,043cc
77.0 x 56.0mm
11.8:1
DFI® w/38mm Keihin throttle bodies (4) and oval sub-throttles
TCBI with digital advance
6-speed, return shift
41mm inverted cartridge fork with stepless compression and rebound damping, adjustable spring preload/4.7 in
Horizontal back-link with stepless rebound damping, remotely adjustable spring preload/5.7 in
120/70 ZR17
190/50 ZR17
24.0°/3.9 in
5.3 in
56.7 in
82.7 in
32.5 in
46.9 / 48.2 in
32.3 in
513.8 lb**
5.0 gal
Sealed Chain
Aluminum backbone
Metallic Carbon Gray / Metallic Diablo Black
12, 24, 36 or 48 months
Kawasaki Traction Control (KTRC), Kawasaki Intelligent anti-lock Brake System (KIBS), Power Mode, Kawasaki Corner Management Function (KCMF), Kawasaki Quick Shifter (KQS) (Up-Down)
Dual 300mm petal-type rotors with radial-mount 4-piston monobloc calipers and ABS
Single 250mm petal-type rotor with single-piston caliper and ABS
12 Month Limited Warranty
**Curb weight includes all necessary materials and fluids to operate correctly, full tank of fuel (more than 90 percent capacity) and tool kit (if supplied).
Specifications subject to change
KAWASAKI CARES: Always wear a helmet, eye protection, and proper apparel. Never ride under the influence of drugs or alcohol. Read Owner’s Manual and all on-product warnings. Professional rider shown on a closed course. ©2021 Kawasaki Motors Corp., U.S.A.
Sudden over-application of the brakes, or braking on low-grip surfaces (surfaces with a low coefficient of friction) such as wet asphalt or manhole covers, may cause a motorcycle's wheel(s) to lock up and slip. ABS was developed to prevent such incidents. Kawasaki ABS systems are controlled by highly precise and extremely reliable programming formulated thorough testing of numerous riding situations. By ensuring stable braking performance, they offer rider reassurance for even greater riding enjoyment.
To meet the special requirements of certain riders, specialized ABS systems are also available. For example, KIBS (Kawasaki Intelligent anti-lock Brake System) is a precision-tuned brake system designed specifically for supersport models, enabling sport riding to be enjoyed by a wider range of riders. By linking the front and rear brakes, K-ACT (Kawasaki Advanced Coactive-braking Technology) ABS provides the confidence to enjoy touring on heavyweight models. Kawasaki is continually working on the development of other advanced ABS systems.
Developed and tested through Kawasaki Factory racing, the Assist & Slipper Clutch utilizes two types of cams. An assist cam and a slipper cam enable the Assist & Slipper Clutch to function in two different ways, with the clutch hub working together or apart from the operating plate.
Under normal operation, the assist cam functions as a self-servo mechanism, pulling the clutch hub and operating plate together to compress the clutch plates. This allows the total clutch-spring load to be reduced, resulting in a lighter clutch feel at the lever.
When excessive engine braking occurs – as a result of quick downshifts (or an accidental downshift) – the slipper cam comes into play, forcing the clutch hub and operating plate apart. This relieves pressure on the clutch plates to reduce back-torque and help prevent the rear tire from hopping and skidding.
Using high-precision electronics for engine management, Kawasaki models can achieve a high level of fuel efficiency. However, fuel consumption is greatly affected by throttle use, gear selection, and other elements under the rider's control. The Economical Riding Indicator is a function that signals when current riding conditions are consuming an optimally low amount of fuel. The system continuously monitors fuel consumption, regardless of vehicle speed, engine speed, throttle position and other riding conditions. When fuel consumption is low for a given speed (i.e., fuel efficiency is high), an "ECO" emblem appears on the LCD screen of the instrument panel. By riding so that the "ECO" mark remains on, fuel consumption can be minimized.
While effective vehicle speed and engine speed may vary by model, paying attention to conditions that cause the "ECO" mark to appear can help riders improve their fuel efficiency – a handy way to increase cruising range. Further, keeping fuel consumption low also helps minimize negative impact on the environment.
Electronic Cruise Control allows the rider to maintain a desired speed (engine rpm) with the simple press of a button. Because the rider does not have to constantly maintain the throttle position, this system allows relaxed cruising. This reduces stress on the right hand when traveling long distances, contributing to a high level of riding comfort.
Electronic Cruise Control is featured on Kawasaki's Vulcan 1700 / VN1700 Series cruisers and Jet Ski Ultra 300X and 300LX personal watercraft series. These models are equipped with an Electronic Throttle Valve system, meaning the throttle valves are not actuated directly by twisting the throttle grip (or pulling the throttle lever); rather, a position sensor on the throttle grip sends a signal to the ECU that determines the ideal throttle position. This is how Electronic Cruise Control is able to automatically adjust engine power to maintain vehicle speed when ascending or descending grades in the road. Without the precise control enabled by Electronic Throttle Valves, functions like Electronic Cruise Control would not be possible.
Kawasaki’s fully electronic throttle actuation system enables the ECU to control the volume of both the fuel (via fuel injectors) and the air (via throttle valves) delivered to the engine. Ideal fuel injection and throttle valve position results in smooth, natural engine response and the ideal engine output. The system also makes a significant contribution to reduced emissions.
Electronic throttle valves also enable more precise control of electronic engine management systems like S-KTRC and KTRC, and allow the implementation of electronic systems like KLCM, Kawasaki Engine Brake Control, and Cruise Control.
When comparing Kawasaki's traditional Uni-Trak® rear suspension, which mounts the shock unit vertically, with Horizontal Back-link rear suspension, the shock unit is almost horizontal. Kawasaki's original suspension arrangement places the shock unit very close to the bike's center of gravity, greatly contributing to mass centralization. And because there is no linkage or shock unit protruding beneath the swingarm, this frees up space for a larger exhaust pre-chamber (an exhaust expansion chamber situated just upstream of the silencer). With a larger pre-chamber, silencer volume can be reduced, and heavy exhaust components can be concentrated closer to the center of the bike, further contributing to mass centralization. The overall result is greatly improved handling.
Another benefit is that the shock unit is placed far away from exhaust heat. Because it is more difficult for exhaust heat to adversely affect suspension oil and gas pressure, suspension performance is more consistent. Horizontal Back-link Rear Suspension offers numerous secondary benefits like this.
The strength of Kawasaki’s cutting-edge electronics has always been the highly sophisticated programming that, using minimal hardware, gives the ECU an accurate real-time picture of what the chassis is doing. Kawasaki’s proprietary dynamic modelling program makes skilful use of the magic formula tyre model as it examines changes in multiple parameters, enabling it to take into account changing road and tyre conditions.
The addition of an IMU (Inertial Measurement Unit) enables inertia along 6 DOF (degrees of freedom) to be monitored. Acceleration along longitudinal, transverse and vertical axes, plus roll rate and pitch rate are measured. The yaw rate is calculated by the ECU. This additional feedback contributes to an even clearer real-time picture of chassis orientation, enabling even more precise management for control at the limit.
With the addition of the IMU and the latest evolution of Kawasaki’s advanced modelling software, Kawasaki’s electronic engine and chassis management technology takes the step to the next level – changing from setting-type and reaction-type systems to feedback-type systems – to deliver even greater levels of riding excitement.
Using the latest evolution of Kawasaki’s advanced modeling software and feedback from a compact IMU (Inertial Measurement Unit) that gives an even clearer real-time picture of chassis orientation, KCMF monitors engine and chassis parameters throughout the corner – from entry, through the apex, to corner exit – modulating brake force and engine power to facilitate smooth transition from acceleration to braking and back again, and to assist riders in tracing their intended line through the corner. The systems that KCMF oversees vary by model, but may include:
Kawasaki developed KIBS to take into account the particular handling characteristics of supersport motorcycles, ensuring highly efficient braking with minimal intrusion during aggressive sport riding. It is the first mass-production brake system to link the ABS ECU (Electronic Control Unit) and engine ECU.
In addition to front and rear wheel speed, KIBS monitors hydraulic pressure of the front brake caliper(s), throttle position, engine speed, clutch actuation and gear position. This diverse information is analyzed to determine the ideal hydraulic pressure for the front brake. Through precise control, the large drops in hydraulic pressure seen on standard ABS systems can be avoided. Additionally, the tendency for the rear wheel of supersport models to lift under heavy braking can be suppressed, allowing the rider to maintain control of the rear brake when downshifting.
KTRC, Kawasaki's advanced traction control system provides both enhanced sport riding performance and the peace of mind to negotiate slippery surfaces with confidence. Multiple rider-selectable modes (the number of modes varies by model) offer progressively greater levels of intrusion to suit the riding situation and rider preference.
Less intrusive modes maintain optimum traction during cornering. Designed with sport riding in mind, they facilitate acceleration out of corners by maximizing forward drive from the rear wheel. And because Kawasaki’s sophisticated software bases its dynamic analysis on the chassis’ orientation relative to the track surface (rather than relative to a horizontal plane), it is able to take into account corner camber, gradient, etc., and adapt accordingly.
In the more intrusive modes (and for some models, in any mode), when excessive wheel spin is detected, engine output is reduced to allow grip to be regained, effectively enabling riders to negotiate both short, slippery patches (train tracks or manhole covers) and extended stretches of bad roads (wet pavement, cobblestone, gravel) with confidence.
Models equipped with IMU incorporate chassis-orientation feedback to offer even more precise management.
Power modes offer riders an easily selectable choice between Full and Low Power. While Full Power is unrestricted, in Low Power mode, maximum power is limited to approximately 75-80% of Full. Throttle response is also milder in Low Power mode. Riders may opt to use Low Power mode for rainy conditions or city riding, and Full Power when sport riding.
Available on the Ninja® ZX™-14R / ZZR1400, Versys® 1000 and other Kawasaki models, when combined with the 3-mode KTRC (+ OFF) Traction Control system, Power Mode selection offers a total of eight combinations (KTRC: Mode 1/2/3/+OFF x Power Mode: Full/Low) to suit a wide range of riding situations. For example, an experienced rider enjoying sport riding on dry pavement might choose Full Power and Mode 1. On a wet or slippery surface, choosing Low Power and Mode 3 would yield the lowest chance of incurring wheel-spin, and the milder throttle response would offer a higher level of riding safety.
Clever technology enables riders to connect to their motorcycle wirelessly.
Using the smartphone application “RIDEOLOGY THE APP,” a number of instrument functions can be accessed, contributing to an enhanced motorcycling experience. Vehicle information (such as the odometer, fuel gauge, maintenance schedule, etc) can be viewed on the smartphone. Riding logs (varies by model, but may include GPS route, gear position, rpm, and other information) can be viewed on the smartphone. When connected, telephone (call, mail) notices are displayed on the instrument panel. Riders can also make changes to their motorcycle’s instrument display settings (preferred units, clock and date setting, etc) via the smartphone. And on certain models, it is even possible to check and adjust vehicle settings (such as Rider Mode, electronic rider support features, and payload settings) using the smartphone.